Types of Matrices
-
Identify types of matrices such as Square, Diagonal, Scalar, Row, Column, Identity.
Row Matrix
A matrix which has only one row.
\[\mathrm{Example\ of\ Row\ Matrix} \large \begin{bmatrix} 2 & -6& 4 \end{bmatrix}\]
Column Matrix:
A matrix which has only one column.
\[\mathrm{Example\ of\ Column\ Matrix} \large \begin{bmatrix} 3\\ 4\\ -1 \end{bmatrix}\]
Square Matrix:
A matrix having same no. of rows and columns.
\[\mathrm{Example\ of\ Square\ Matrix} \large \begin{bmatrix} 3 & 6 & 1\\ 4&5 & 2\\ 2& 0 & -2 \end{bmatrix}\]
Diagonal Matrix:
A square matrix where only diagonal elements are present, non-diagonal elements are zero.
\[\mathrm{Example\ of\ Diagonal\ Matrix} \large \begin{bmatrix} 3 & 0 & 0\\ 0&5 & 0\\ 0& 0 & -2 \end{bmatrix}\]
Scalar Matrix:
Diagonal matrix where all diagonal elements are identical.
\[\mathrm{Example\ of\ Scalar\ Matrix} \large \begin{bmatrix} 3 & 0 & 0\\ 0&3 & 0\\ 0& 0 & 3 \end{bmatrix}\]
Identity Matrix:
Scalar Matrix where the diagonal elements are one.
\[\mathrm{Example\ of\ Identity\ Matrix} \large \begin{bmatrix} 1 & 0 & 0\\ 0&1 & 0\\ 0& 0 & 1 \end{bmatrix}\]
Singular Matrix:
A Matrix whose determinant is equal to zero.
\[\mathrm{Example\ of\ Singular\ Matrix} \large \begin{bmatrix} 2 & 3\\ -6 & -9 \end{bmatrix}\]