Derivatives
-
Calculate derivative using basic formulae- algebraic, trigonometric, inverse trigonometric, logarithmic and exponential.
-
Calculate derivative using rules of derivatives such as - Addition/subtraction, product, quotient and chain rule.
-
Apply differentiation to calculate tangent and normal, rate of change, maxima/minima and errors/approximation.
First Principle of Derivative
\[f'(x) = \lim_{\Delta x \to 0}\frac{f(x+ \Delta x)-f(x)}{ \Delta x}\]
Some Basic Formulae:
\[\dfrac{d}{dx} \ c = 0\]
\[\dfrac{d}{dx} ( u \pm v \pm w \pm ....) = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx} \pm .....\]
\[\dfrac{d}{dx} ( cu ) = c \dfrac{du}{dx}\]
\[\dfrac{d}{dx} ( uv ) = u\dfrac{dv}{dx} + v\dfrac{du}{dx}\]
\[\dfrac{d}{dx} ( \dfrac {u}{v}) = \dfrac{v\frac{du}{dx} - u\dfrac{dv}{dx} }{v^{2}}\]
Chain Rule :
\[\dfrac{dy}{dx} = \dfrac{dy}{du} \dfrac{du}{dx}\]
List of Derivative Formulae:
Algebraic Group
\[\dfrac{d}{dx} x^n = n x^{n-1}\]
Trigonometric Group
\[\dfrac{d}{dx} \sin x = \cos x\]
\[\dfrac{d}{dx} \cos x = -\sin x\]
\[\dfrac{d}{dx} \tan x = \sec^2 x\]
\[\dfrac{d}{dx} \cot x = - \csc^2 x\]
\[\dfrac{d}{dx} \sec x = \sec x \tan x\]
\[\dfrac{d}{dx} \csc x = - \csc x \cot x\]
Logarithmic and Exponential Group
\[\dfrac{d}{dx} e^x = e^x\]
\[\dfrac{d}{dx} a^x = a^x \log a\]
\[\dfrac{d}{dx} \log x = \dfrac{1}{x}\]
Inverse Trigonometric Group
\[\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}\]
\[\dfrac{d}{dx} \cos^{-1} x = \dfrac{-1}{\sqrt{1-x^2}}\]
\[\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{{1+x^2}}\]
\[\dfrac{d}{dx} \cot^{-1} x = \dfrac{-1}{{1+x^2}}\]
\[\dfrac{d}{dx} \sec^{-1} x = \dfrac{1}{x \sqrt{x^2 - 1}}\]
\[\dfrac{d}{dx} \csc^{-1} x = \dfrac{-1}{x \sqrt{x^2 - 1}}\]